Pulsar Fusion

Nuclear Fusion Research



APPLIED FUSION: Private Nuclear Fusion Reactors, Richard Dinan Lecture, Oxford University SCISOC


Applied Fusion Systems CEO, Richard Dinan describes the landscape for private development of nuclear fusion reactors in 2018. Is this sector exclusive to billionaire investors only or have we arrived at a point where the greater investing community is waking up to fusion energy in a big way?


Read More: The British Reality Star Building a Fusion Reactor…

Watch: Richard Dinan – Seeker, How Close are we to Fusion Energy?…

Visit Applied Fusion Systems Website:

Learn more and get Richard’s book- ‘The Fusion Age – Modern Nuclear Reactors ‘ on Amazon…

Follow Applied Fusion on Social Media @applied_fusion on Twitter @appliedfusion on Instagram

Follow Richard Dinan on Social Media @RichardDinan on Twitter @RichardDinan on Instagram

Seeker USA: How Close Are We to Fusion Energy? Feature Richard Dinan – CEO, Applied Fusion Systems

Fusion energy might be the safe, efficient, reliable and clean energy source that could save our planet. But, how close are we to a world where fusion energy is powering our homes? How Close Are We? Season 1 –… Read More: MIT Achieves Breakthrough in Nuclear Fusion… “New experiments with helium-3 in a magnetic confinement tokamak have produced exciting results for the future of fusion energy, including a tenfold increase in ion energy.” A Dream of Clean Energy at a Very High Price… “ITER, short for International Thermonuclear Experimental Reactor (and pronounced EAT-er), is being built to test a long-held dream: that nuclear fusion, the atomic reaction that takes place in the sun and in hydrogen bombs, can be controlled to generate power.” What is Fusion?… “With its high energy yields, low nuclear waste production, and lack of air pollution, fusion, the same source that powers stars, could provide an alternative to conventional energy sources. But what drives this process?” ____________________ Seeker explains every aspect of our world through a lens of science, inspiring a new generation of curious minds. Join Seeker as we go in search of experts, academics and innovators who are racing to solve some of humanity’s biggest scientific challenges. We’ll dive into the facts and comb through the research to find the answers you’re looking for. Visit the Seeker website How Close Are We? on Facebook Subscribe now!… Seeker on Twitter Seeker on Facebook Seeker

‘First Look’ Applied Fusion Systems release early reactor design and modelling concepts

The need for higher efficiency and lower costs in fusion engineering has led AFS to the spherical tokamak reactor design model. These reactors offer more favourable magnetohydrodynamic behaviour meaning they can be run for longer bursts and are less prone to damaging plasma instabilities called disruptions. In addition, spherical tokamaks are known to operate more efficiently confining plasma at a higher pressure than conventional tokamaks using less intense and therefore cheaper magnetic fields.


The reactor is part of the new breed of high efficiency spherical tokamaks. The STAR planned Alphpa and Beta reactors are intended to produce 100MW of electricity and will do so using the new generation of materials suited to fusion science; for the toroidal coils REBCO superconductors make the design far easier to service because they are simpler to join. The design also features symmetrical diverter systems which can be used to aid heat extraction from the plasma.

 STAR will make use of recent advanced in additive manufacturing otherwise known as 3d printing. Major components can now be laser sintered rather than cast or milled, reducing build costs and times. Complex geometries become possible with additive manufacturing and so AFS can explore novel approaches to existing design challenges.

 STAR is slightly larger than the MAST reactor at CCFE, to ensure it can meet a minimum commercial standard of 100MW electrical output. 


The Physics

If heat is converted to electricity at 40% efficiency, the reactors need a fusion power of 250MW to produce 100MW of electricity. A steel blanket is widely recognised to support a maximum wall loading of 5MW/mˆ2 so at peak wall loading the STAR reactors A and B require a wall area of ˜50Mˆ2 (250/5). These requirements determine the basic geometry of STAR, major radius = 1.1m minor radius = 0.9m. 

Nuclear Fusion: Small is beautiful. The UK is set to become a hub for Nuclear Start-ups.

Nuclear Fusion: Small is beautiful. The UK is set to become a hub for Nuclear Start-ups.

Small British Firm, Applied Fusion Systems has its sights set on its own reactor and believes that the UK is a center for excellence of Nuclear Fusion Technology offering Small Enterprises an unparalleled opportunity for Research and Investment.


Fusion was easy, that’s what scientists thought, that was in the 1950s. Things didn’t go according to plan.

Over the past two weeks’ fusion research has seen more setbacks. Firstly, Princeton’s NSTX reactor was shut down after a malfunctioning copper coil melted. The device will be offline for a year. This week the Alcator c-mod at MIT was powered up for the last time. The reason? Funding cuts.

Fusion research has a problem and the problem is size. Years ago, the US agreed to join the ITER project, a vast multi-billion dollar consortium of countries building a huge test reactor in the south of France. Not scheduled to begin fusion reactions until 2027 and massively expensive, it took two years simply to decide to locate the project in Cadarache, Provence. The huge expense of ITER means that funds are tight for homegrown fusion research, hence the demise of Alcator at MIT.

But look closer and you will see the emergence of a new wave of fusion research. In recent years, a number of startups have appeared pursuing their own path to commercial fusion conceptualising smaller, cheaper designs with lead times of years instead of decades.

In the UK, Applied Fusion Systems is typical of this new breed; small, nimble and plugged into a world leading research community. Founded by Richard Dinan and Dr. James Lambert, Applied Fusion is in the process of privately financing the construction of its own British made Tokamak reactor, ‘S.T.A.R.’ (Small Toroidal Atomic Reactor).

The designers behind STAR have compiled elements from some of the most successful reactors over the past 20 years and applied the very latest super computing technologies, combined with a cutting edge understanding of Plasma Physics. A subject for which the UK is home to a wealth of World experts. Additionally down the road in Culham is CCFE, the Culham Centre for Fusion Energy. Here sit JET and MAST, world-leading fusion experiments with their researchers singly focused on bringing fusion to the grid.

Fusion had been a tough sell for venture capitalists but a number of factors have combined to change that making fusion particularly enticing to investors and graduates who, a few years ago, might have gravitated towards investment banking. Fusion research is a number crunching game and over the last decade the cost of supercomputing has collapsed. Instead of filling warehouses with computers researchers can now hire time on a provider’s cluster on the other side of the world.

The financial crisis of 2008 has reversed a brain drain which saw many to physicists leave the lab for the city. Now, with Imperial College, Oxford, Cambridge, York and others carrying out world-class fusion research the time has never been better for UK enterprises to get into fusion.

To sign up to regular updates on Applied Fusion, register your interest. visit

Contact Author:


Stellarators, strange and charming

I just came across this beautiful animation, it’s a simulation of the Wendelstein 7-X currently being built at the Max Planck Institute for Plasma Physics.

A wonderful demonstration of the importance and beauty of plasma gyrokinetics.

Stellarators have their bizarre shape to keep the plasma away from the walls. Tokamaks take a different strategy and pass a current directly through the plasma. They look good too. Enjoy!

Blog at

Up ↑